JOURNAL OF COMPUTATIONAL PHYSICS140,148-171 (1998)
ARTICLE NO. CP975880

Transport of Magnetic Flux in an Arbitrary
Coordinate ALE Code

Robert E. Peterkin Jr., Michael H. Fresand Carl R. Sovineéc

Directed Energy Directorate, Air Force Research Laboratory: Phillips Lab,
Kirtland AFB, New Mexico 87117
E-mail: bob@ppws07.plk.af.mil

Received October 28, 1997

We illustrate a new technique for computing the time-evolution of magnetic flux
on a generally nonorthogonal computational grid of a time-dependent, arbitrary
Lagrangian—Eulerian magnetohydrodynamics (MHD) simulation code and apply
this technique to some classical MHD test problems. For a nontrivial application, we
demonstrate the power of this technique for the interesting problem of compact toroid
translation between a pair of converging conical electrodes 1998 Academic Press

I. INTRODUCTION

The ability to perform accurate simulation of the time evolution of a conducting me
netofluid is of great utility in a wide variety of space and laboratory situations. Of particu
interest to the authors are collisional plasmas that are generated in the laboratory in
regions defined by solid walls that may be either conductors or insulators. Often, the
ume enclosed by the solid walls has a complex shape. A particular example of a labor:
geometry of interest to us, illustrated in Fig. 1, occurs in the Phillips LaborateRpUDER
(magnetically accelerated ring to achieve ultra-high directed energy and radiation) com
toroid program. Its purpose is to study the formation, compression, and acceleratic
magnetized plasma rings. An overview of eRAUDER experiment is given by Degnan
etal.[1]. The compacttoroids are produced in a magnetized coaxial gun and are compre
between a pair of converging conical electrodes.

Simulation of plasma dynamics is often performed on a discrete three-dimensional r
thatis built from primitive polyhedra. A particularly simple polyhedron thatis used by ma
code developers is the cube, but it is not possible to stack cubes to conform to the geot
of Fig. 1 without overlap. To simulate plasma dynamics within volumes of complex sha
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FIG.1. MARAUDER highenergy compacttoroid accelerator design concept. Acompacttoroidis produced ir
plasma gun and expansion volume that form the lower half of the apparatus. The toroid is then compressed be
a pair of converging electrodes and accelerated in the converging coaxial gap downstream of the compr
cones.

we have developed theacH (multiblock arbitrary coordinate hydromagnetics) codes fc
simulating unsteady, collisional, plasma behavior. The two-dimensional versiam2,

is discussed in [2], and the three-dimensional versioxGH3, is discussed in [3]. The

two-dimensional code is obtained from the three-dimensional version by demanding
all derivatives in one of the coordinate directions vanish. The geometry in the code
described in either a cylindrical, or a Cartesian orthonormal frame.

TheMACH codes are of the Arbitrary Lagrangian/Eulerian (ALE) variety which allow
for flexibility in the physics options at the expense of some numerical complexity. Inan A
code, Faraday’s law is advanced in two steps: a Lagrangian advance followed by a rem
the magnetic field from the Lagrangian grid to the computational grid. The computatic
grid can be at rest in a laboratory frame (Eulerian), at rest in the fluid frame (Lagrangi
or in some other arbitrary state.

The Lagrangian advance of Faraday’s law is discussed in Brackbill and Pracht [4] a
not reitereated here. The purpose of this paper is to describe a new magnetic flux-conse
algorithm for the remap portion of the numerical solution to Faraday’s equation goverr
the dynamics of the magnetic field on an arbitrary coordinate mesh. The layout of
paper is as follows. The relevant equations solveduagH and transport of conserved
guantities through the mesh are described in Section Il. The magnetic flux transport
rithm for an ALE code is described in Section Ill. Test problems that illustrate and valid
the implementation of the magnetic flux transport algorithm are presented in Sectior
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Time-dependent simulations of compact toroid compression and translation are desc
in Section V. Our conclusions are given in Section VI.

Il. THE macH CODES

The MACH codes have been used to solve the time-dependent, single fluid, multit
perature, nonideal radiation magnetohydrodynamics (MHD) equations for real mate
to guide and interpret a variety of collisional plasma experiments, as well as to perf
numerical experiments on novel plasma physics ideas. In this paper we focus on the d
of our new algorithm for the numerical convection of magnetic flux through an arbitre
mesh.

The dynamical equations are solved on a mesh that is composed of primitive cells.
cells are arranged in a patchwork of logically rectangular collections, called blocks, alig
corner to corner. Th®IACH grid lies in a family of planes equally spaced in the transver:
coordinate—eitheé or z. Furthermore, the subgrids within those planes are identical
each other. Thus, the three-dimensional grid is generated from a two-dimensional
by replication at fixed intervals in the transverse direction. This multiple block structt
is suitable for performing numerical simulations of complex experimental configuratic
such aswARAUDER for which a block structured 2D grid is shown in Fig. 2.

The primitive cell inMACH is a hexahedron. In Cartesian coordinaies/( z), itis formed
by translating an arbitrarily shapeg-plane quadrilateral in the-coordinate direction. In
cylindrical coordinatesr( ¢, z), the primitive cell is constructed by translatingramplane
quadrilateral in the-coordinate direction. Henceforth, we refer to ther ¢ coordinate as
the “orthogonal” direction, and they or rz coordinates as “in-plane.” These terms refer t
the computational geometry of the two-dimensional code. For the geometry of a com
toroid, the “orthogonal” direction is usually called “toroidal” and the “in-plane” direction
are referred to as “poloidal.” A sampleacH hexahedral primitive cell is illustrated in
Fig. 3. Each primitive cell has six faces, and each face is a quadrilateral. In the 3D ¢
each face is shared by two cells. In the 2D code, the four faces with in-plane normals
shared by two cells, and the two faces with orthogonal normals are not shared. To elim
ambiguity, we assign only the left (L), bottom (B), and front (F) face to a particular cell

A. The Ideal MHD Equations ok

For a charge-neutral magnetofluid of mass dengitynoving with velocity,u, in the
presence of a magnetic field, the code solves the mass continuity equation,

o = V- (pw); 1
ot (pu) (1)
the fluid momentum equation,
au
pop = —PU VUV (=¥ (Fe+ P+ Q) + M) (2)

the ion and neutral particle energy equation,

ag
pa_t':—pu'Vei—PlV’u-i-@ei; 3)
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FIG. 2. Collections of hexahedral cells form a block. Blocks are patched together to form a computati
domain. The computational region above is for thi&RAUDER concept and is made from 14 blocks.

\

FIG. 3. Hexahedral cell for forming finite volumes iacH. Each primitive cell has six faces, and each face
is shared by two cells. To eliminate ambiguity, we assign only the left (L), bottom (B), and front (F) face t
particular cell.
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the electron energy equation,

d
p%z—pu-v(ﬁ‘e—PeV-u—}—J-E—CDei; 4)
and Faraday’s law,
B
— =-VxE. 5
m X ®)

In Eq. (2),y is the spatial metric tensor with contravariant componerfté, andM is
the contravariant Maxwell stress tensor, which in MKS units is

M = i <|30t Bf — }BZVaﬁ)’ (6)
Mo 2
where Greek indices run from 1 to 3 and represent the three orthogonal spatial dimens
In this paper, we assume the summation convention over repeated indicesMncthe
codes, the equations are generally solved in an orthonormal frame in which case the s
metric tensor is equivalent to the unit dyad. However, some of the analysis in the follow
sections will be done in a coordinate basis in which the spatial metric can differ from the
dyad.®.; is an electron—ion coupling term [5Q) is an artificial numerical compressional
viscosity pressure.
The electric fieldE, is obtained from a simple Ohm'’s law,

E=-uxB. (7)

The displacement current is assumed to be relatively small so the current density is si

VxB
J= 2= 8)
o

The numerical approximation to the dynamical equations should preserve the constrai
the magnetic field,

V.-B=0. )

This set of equations is closed by equations of state for the electron and ion plus ne
pressuresPeiy = P(p, €¢i)). In this paper, we use an ideal gas equation of state wi
constant ratio of specific hedfs

l:)e(i) =T - 1),0€e(i)- (10)

B. Spatial Centering of Variables e

Asiscommonin ALE codes, the velocity vector field resides at the corners of the primi
cell. These corners are usually called the nodes of the mesh. The eight cell céntrs,
eight adjacent primitive cells that are placed inxa 2 x 2 array form a dual primitive cell.
The nodes of the primitive cell move with fluid velocity during the Lagrangian advan
of the dynamical equations (1)—(5). Because the primitive cells are in general not cL
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finite volume differencing is used in theacH codes. A finite volume approximation to the
divergence of a vector field, is then

1 1
V-A:—/V-Advzfj{A-dS, (11)
Vv Vv

where we have applied Stokes’ theorem for a control voluvhethat is bounded by a
surface S, with outward pointing normaR, so the components diSared§, = n,dS On

a discrete mesh, the control volume is that of the primitive cell or its dual, and the sur
integral in Eq. (11) is approximated by a sum over the faces of the cell. Hence,

Mfaces

V-AZVZAﬂmASn, (12)

m=1

wherefy, is the unit normal to thenth two-surface of areaA S,,. The number of faces,
Miaces depends on how exactly the control volunwg,is constructed. Specificallfyaces
need not be six.

If A resides at cell centers, thénh- A resides at cell nodes, and vice versa. This is
general property; each derivative moves the attention between cell center and cell r
Thus, since forces are applied to the nodes in the Lagrangian step and are comput
taking the divergence of a stress tensor as in Eq. (2), the stresses should be located
centers. HenceRe, P, B, ando reside fundamentally at cell centersMcH.

C. Faraday’s Law for Ideal MHD

Inideal MHD, the electric field is simply-u x B, so Eg. (5) can be written in component
form as
B
ot

= €YV (e, UF BY), (13)

wheree®?” is the Levi—Civita tensor density
P =y 2By, (14)

wherey is the determinant of the spatial metric tensor in the particular coordinate syst
and pBy] is the well-known totally antisymmetric symbol. If, as suggested in Ref. [6], v
define the contravariant magnetic vector density of weight 1 constructed from the mag
field and the 3-space metric as

B* = /yB?, (15)

then Faraday’s law for ideal MHD takes on the particularly simple form in a coordin:
basis (as contrasted to an orthonormal frame)

aB“ ., N
ot = W(U BY —u”pY). (16)

Itis worth noting that the spatial metric in a cylindrical coordinate systegh, (z) is diagonal
with components/y = 1, ypp =12, 22 = 1, so,/y =r. Therefore, the physical poloidal
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components of the magnetic field in a cylindrical orthonormal frame are identical to
poloidal components in a cylindrical coordinate basis, and the physical toroidal compol
in an orthonormal frame is equaltB? in a cylindrical coordinate basis. Hence, the poloide
components of3 in a coordinate basis are equal to the poloidal component8 afi an
orthonormal frame, and the toroidal component@fs equal to the physicaB? in an
orthonormal frame.

D. Conserved Quantities and Transport through the Mesh

The differential equations (1)—(5) are consistent with the integral conservation law:
mass, momentum, internal energy, and magnetic flux. These quantities are conserved
ally, but not, generally, within each primitive cell where mass, momentum, energy,
magnetic flux can be transported between adjacent cells.

As an illustration, let us consider the total time derivative of the nrasis the generally
time-dependent volum¥, of a primitive cell with bounding surfac8, Let the grid velocity,
ug, be the velocity at which the boundary of the primitive cell moves. In the case of p
Lagrangian motion, the grid velocity is identically the fluid velocity,but generally, the
relative velocity, defined as

Urel = Ug — U a7

is nonzero. Then the total time derivative (or convective derivative) is given by

ad
+ug- V. (18)

D, = —
EPT:

Therefore, the total time derivative of the cell mass is
Dym = Dt/ pdV=/ [(Dep) AV + p(Dq dV)], (19)
V(t) V(t)

where Dy p is obtained by combining Eq. (18) with Eqg. (1), alddV is given by the
well-known Euler expansion formula [7]:

D;dV =V -ugdV. (20)
Hence, Eq. (19) becomes
Dim = / V - (pUre) dV (21)

which can be written as a surface integral by applying Stokes’ theorem to obtain

Dtm = %pul'd . dS. (22)

The meaning of thisis clear: the mass in a cell changes by an amount equal to an appropr
chosen mass density, times the volume flux out of a cellye - dS. For pure Lagrangian
motion in whichu,g vanishes, the mass in a cell does not change.
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A similar analysis can be performed for the magnetic flbxthrough a surfaces,

q>=/ BdS, = podS, (23)
S(t)

S(t)

whered § is the coordinate area element which is related to the physical area elei§gnt,
via

ds = J7dS. (24)

The total time derivative of the magnetic flux is then

D& = Dt/ﬁ“dsg=/[<Dtﬁ“)d$+ﬂ“(Dtd$)}, (25)

whereD;8* is obtained by combining Eq. (18) with Eq. (16) and Eq. (9), &rd S is
(see, for example, Ref. [6])

DS, = (Vﬂug) ds - (Vaug) ds;. (26)

Hence, Eq. (25) becomes

Dtd>=—/V><(ure|><,8)~dSC 27)

which can be written as a line integral by applying Stokes’ theorem to obtain

D = —f (Urer x B) - X, (28)

where the line integral is over the one-dimensional closed coordinate path that enclose
surface S°. The meaning of this is clear: the flux through a surface changes by an am
equal in magnitude, and opposite in sign, to the integral of the electric field around a clc
loop that bounds the surface. An alternate interpretation, similar to that for the chanc
cell mass, can be seen by rewriting Eq. (28) as

D& = —74 B (Uret x dX°) (29)

which means that the flux change is equal to an appropriately chosen magnetic v
density,3, times the area flux out of a c€lli,| x dx®). If the relative velocity vanishes, as
it does for pure Lagrangian motion, the magnetic flux does not change.

Ill. ALGORITHM FOR TRANSPORTING MAGNETIC FLUX

In 1988, Evans and Hawley published an “optimal strategy” for numerically evolving t
magnetic field equation of MHD in a manner that maintains the divergencelessness ¢
magnetic field to within machine round-off error [6]. A key element of their approach
the choice of spatial location of the three components of the magneticBieldhey relied
on a staggered mesh on which each componefi @mplaced on one of the three unique
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generating orthogonal faces of each primitive cell. Their algorithm is thus unsuitable
the MACH codes in which all three components®fare co-located at the center of eact
primitive cell. We describe here a similar, but new, algorithm that accounts for the magn
fluxes differently than is done in Ref. [6].

The strategy of Evans and Hawley is to compute a magnetic flux for each compol
of B through the two-surface on which each componer oésides. The time-derivative
of each flux is evaluated by taking a line-integral-afi,; x 3 along the one-dimensional
closed coordinate boundary of each two-surface (see Eq. (28)). In our new algorithn
MACH, we use a similar strategy, but the flux surfaces for the in-plane components of
magnetic field are not the faces of the primitive cell.

In an ALE code, the grid and the fields supported by it are advanced during each cor
tational cycle of incremental time\t, in two steps. First, the grid and its fields are move
in a Lagrangian fashion; that is, each node of the grid is moved with the local magnetof
velocity, u, by a displacementax,. = uAt. We label the fields of the state of the systen
with a subscript to indicate the state after the Lagrangian step, but before the transj
step. Second, the grid and its fields generally undergo a pull-back (or remap) to a final
F. During the pull-back, the displacement of each node of the gritkigii-pack= UrelAt.
The extreme in which there is no pull-back is the limit of fully Lagrangian motion. Tt
other extreme in which the pull-back brings the grid completely back to the original st
is the pure Eulerian case.

The Lagrangian advance of the physical componenBiefdescribed by Brackbill and
Pracht [4]. The pull-back that conserves magnetic flux is done separately for each o
three orthogonal components Bf In our treatment, all three components@fare co-
located at each cell centé®, We construct three flux surfaces—one for each compone
of B—each of which contains the poir@, The construction is illustrated in Fig. 4.

A. Finite-Volume Magnetic Flux Advance

The prescription has three steps: (1) compute three fluxes through three Lagrar
surfaces from three Lagrangian field components for each cell; (2) redistribute the t
magnetic fluxes in response to the relative velocity of the grid and fluid; and (3) cc
pute three new magnetic field components in each pulled-back cell from the three
fluxes.

FIG. 4. Three magnetic flux surfaces for computing three different fluesn a cell centered at poing.



TRANSPORT OF MAGNETIC FLUX 157

Let the three flux surfaces be labeled with the indé¢lat runs from 1 to 3. The normals
to then = 1 andn = 2 flux surfaces lie in the grid plane. Because the normal to the frc
face of each primitive cell is in the orthogonal direction, so too is the normal to the3
flux surface.

The flux through theath surface is surface is then

Cbn = Aﬁaﬂa’ (30)

whereA, is a 3x 3 matrix for the coordinate areas of thélux surfaces. Explicitly,

@y Acl:x Agy 0 B
Dy | = A A, O |8, (31)
D3 0 0 A B*

where we usg, y, zto denote the three coordinate directions—witly the in-plane and
the orthogonal coordinates—that are not necessarily Cartesian. In cylindrical coordin
X, Y, Z represent respectively z, ¢. The decoupling of the orthogonal component@f
from the in-plane components is a consequence of the orientation of the primitive ce
themACH codes where, by definition, two of the cell faces are aligned with the orthogo
coordinate direction. In the more general case, none of the elements of Eq. (31) will val

Step one in our three-step process entails computing the three fluxes with data fron
after the Lagrangian step via Eq. (31).

The second step is to update the fluxes with the relative velocity of the grid via Eq. (.
The integral over the path enclosing the flux surface must be replaced by a sum ove
edges that form the boundary of the flux surface. InMiaeH codes, Eq. (28) becomes
a sum over four edges. The change in the magnetic flux through flux surféigeng an
increment of timeAt, is

4
A®y = —AtY (U x B,) - AXS, (32)
=1

whereup,, is the relative velocity of edgk Bﬁp is an appropriately chosen, essentiall
upwind, magnetic vector density at this edge, and® is the coordinate length of the edge
of flux surfacen. The relative velocity in an ALE code is defined at the primitive cell node
which are the endpoints of an edge. The edge-value of the relative velocity is simply
arithmetic mean of the two edge-point values.

The magnetic flux through the pulled-back flux surfade

D, = Op + ADy. (33)

A pair of adjacent generic flux surfaces®f each with outward-pointing normal, is illus-
trated in Fig. 5. The right-handed direction of integration for the boundary of each surfac
illustrated in the figure. Because of the direction of integration, the contribution to the 1
change for the two adjacent flux surfaces on each side of an edge are equal in magn
but opposite in sign. Consequently, we compute the contribution to the flux change f
the motion of a particular edge only once and add it to the flux through surfaneboth
sides of the edge, but with opposite signs so that the total flux change from a single «
contribution is identically zero.
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FIG. 5. A pair of adjacent magnetic flux surfaces for magnetic vector density with the direction of p:
integration shown for both surfaces.

Finally, the new magnetic field densities are computed from the pulled-back fluxes
cell areas by inverting Eq. (30).

IB/a — (A/C an)—lq)/n’ (34)

where prime denotes pulled-back data. Explicitly,

B Aylp  —Ax/p 0 Py
BY | = -AL/e AL/e 0 || D5, (35)
B* 0 0 YA; @3

wheregp is the minor determinant oA, and is explicitly AT, A7, — AT A7, .

B. Divergence Constraint on the Magnetic Field

The finite volume approximation to the constraint on the magnetic field, Eq. (9),
obtained by replacing the generic vector fieddwith B in Egs. (11) and (12). Because
the components d8 reside at cell centers, the divergenceBofesides at grid vertices. A
finite volume approximation to the divergenceBis obtained by selecting an appropriate
control volume )V that surrounds a given vertex. Hence,

Mtaces Mtaces
V.-Bx~— B -AimASh = = AnASS, 36
szzl mASh szﬂﬁ mAS, (36)

where the sum is over the number of faces that define the control volume contai
the vertex at whichv - B is centered, and\ S, is the mth coordinate two-surface area.
B-AinAS; is the magnetic flux through thrath flux surface.

If the coordinate two-surface aredis, A S, are chosen to be constructed from #g,
used in the computation of the three magnetic fluxes via Eq. (31), then it is straightforw
to show that the magnetic flux transport algorithm does not introduce spurious diveBjen

Let us assume that the initial value problem has been correctly specified to be diverg
free. Then we must show that the new magnetic field density is divergence free after i
been time advanced via the new flux transport algorithm.

Each grid vertex is surrounded by a total of eight primitive cells. A closed surface t
encloses the control volume of a particular vertex can be constructed from the three
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surfaces from each of the eight cells that surround the vertex. The three flux surfaces
are associated with each primitive cell do not share any edges, and in fact share only a
point, the cell centef;. However, a surface that encloses the vertex-centered control volt
can be made from all three of the flux surfaces in all of the eight surrounding primitive ¢
if only that quarter of each flux surface that is closest to the vertex is used. Then t
are a total ofmgces = 24 flux surface elements required to evaluate the divergenBe of
Therefore, we can write Eq. (36) as

3 8
B3 en/4 (37)
n=1 =1
where®,, is the magnetic flux through theth flux surface of théth cell that surrounds a
vertex.

Let the spatial indiceg j, andk label cell centers, with and j spanning the in-plane
directions, withi increasing from left to right angl increasing from bottom to top, ard
increasing in the orthogonal direction. Then a vertex, locatéidiafl/2, j +1/2, k+1/2)
is surrounded by four cells in tHeplane, starting from the bottom left and continuing ir
a clockwise manner, at, j,k), (i, j +1,k),({ +1,j + 1, k), and(i + 1, j, k), with an
additional four cells in thé& + 1 plane.

With this labeling convention, Eq. (37) for the divergence of the time-advancedBield
can be written as

1iljk +®@5; |k +®@3; |«
Lij+1k 20 j+1k +P3; 11k
+Pivrjrak —Poivrjeik FPBiv1 11k
VB~ % fil"*“’k i ik | g
=P ket +Po j k41 =3 j k1
,1,i,j+1,k+1 _cblz,i,j+1,k+1 _(Dé,i,j+1,k+1
+P1 i1kt — Lot ket —Paitl ikt

/
+q)1,i+l,j,k+1

/
+¢2,i+1,j,k+1

/
_¢3,i+1.j,k+1

where @, | is the time-advanced magnetic flux through titk flux surface of théth cell,
and where the correct sign has been inserted in front of @g¢to account for the relative
orientation of the flux surface and the surface that surrounds the yertely 2, j +1/2, k +
1/2). Equation (38) is a correct finite volume version of the divergdhoperator applied

toB.

Eachdy | in Eq. (38) isrelated td, | by @ | = &n| + Ady asin Eq. (33). The change
in the divergence oB, A(V - B), can be replaced by the sum of the 24, with signs

as in Eqg. (38). Here each®, is simply the magnetic flux change that is a consequen
of the relative motion between the magnetofluid and the grid given in Eq. (32). The <
is zero since the 24 flux changes can be grouped into 12 pairs so that each pair var
identically. For exampleA®,; jx = —A®411 j« because these flux surfaces share &
edge and the flux change at this edge is computed just once, but applied twice with opf
signs to the adjacent surfaces. Therefore, the magnetic flux transport algorithm pres
the divergence of the magnetic field to machine precision.
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IV. VALIDATION TEST PROBLEMS WITH MACH 2

In what follows, the technique described in the previous section is applied to six sim
numerical magnetic convection problems with thwecH2 code. This test suite is compli-
mentary to that proposed by Stone, Evans, Hawley, and Norman [8].

A. Cartesian Numerical Convection

A standard test problem is the numerical convection of an initially rectangular pu
through a fixed grid. A good numerical scheme will do this with a tolerable degree of
merical diffusion and dispersion. We performed two calculations with different prescriptic
for choosing the upwind value of the magnetic vector density in Eq. (28).

Initially, a test field in they direction with magnitude 1@ T is placed in the 16 left-most
cells of a problem domain with fixed mesh that is 80 cells wide. In this case, the plas
B (ratio of the fluid pressure to the magnetic pressure) is TBe fluid that supports the
pulse of magnetic field is given an initial speed ofi frds (8x 10° times the Alf\én speed)
to the right. The small magnitude of the magnetic field is chosen so as not to produc
appreciable magnetic pressure that would otherwise influence the dynamics. A plot o
magnetic field distribution vs cell number at cycle 0 as well as after 500 computatic
cycles, by which time the pulse has traveled through approximately 40 cells, is show
Fig. 6 for two different choices for the upwind valueBf The computation that produced the
graph on the top of the figure used a first-order donor cell scheme, whereas the compu
that produced the bottom graph used a second-order van Leer scheme [9].

While neither scheme generates substantial dispersion, not surprisingly the van
scheme is superior for reducing numerical diffusion. In both cases, however, the im
mentation of Eq. (32) conserves magnetic flux to machine accuracy. Because the van
prescription is obviously superior to donor cell, the second-order scheme is used il
subsequent simulations.

B. Radial Numerical Convection through a Nonorthogonal Grid

A more challenging test problem is the numerical convection of an initially rectangu
pulse of magnetic field through a fixed, but nonorthogonal, grid. In this case, the i
netic vector field is not aligned with the normals to the magnetic flux surfaces. Again,
performed two calculations with identical initial data and numerical algorithm, but wi
two different computational grids: one composed of only rectangular cells, and the o
composed of nonrectangular cells. Both problems were performed in cylindrical rather
Cartesian coordinates.

A test field is applied in the cylindrical direction but with magnitude 0.6366 T which
yields a total magnetic flux of 1 mWhb. This pulse is placed in the eight right-most cells ¢
problem domain that is 24 cells wide and eight cells high. The fluid moves with a spee
10* m/s to the left (in the-r direction). The ratio of the initial kinetic energy to the magneti
energy is 23. Isocontours of magnetic flux that are superimposed on the computatic
mesh after 200 computational cycles, by which time the inner edge of the pulse has tra\
approximately 1.5 times its initial thickness, are illustrated in Fig. 7. The ratio of the tc
flux after 200 cycles to the total initial flux is 1.003 on the rectangular grid and is 1.C
on the nonorthogonal grid. The figure shows the flux lines to be perfectly straight on
rectangular grid and to bend slightly inward at the top boundary of the nonorthogonal ¢
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FIG. 6. A first-order donor cell scheme (top) contrasted to a second-order van Leer scheme (bottom
numerical convection of a rectangular pulse through a fixed Cartesian grid. The original pulse and the pulse
500 cycles are shown respectively on the left edge and centered at about cell 52.

Part of this bend is caused by the nature of the discrete data set since the magneti
exists only at the nodes of the grid. The plotting package performs a bilinear interpola
between nodes to approximate the placement of the contour lines between the nodes

C. Equilibrium Calculation and Unphysical Forces Parallel to the Magnetic Field

A magnetofluid initially at rest with a uniform axial magnetic field develops spurio
forces parallel tdB when the conservative form of the momentum equation is solved num
ically. As explained by Brackbill and Barnes [10], these spurious forces are a consequ
of nonzeroV - B. Motivated by the numerical test discussed in their paper, we monitor
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possible development of an unphysical acceleration parallel to a magnetic field when w
the conservative form of the momentum equation Eg. (2). The projection of the magr
force density onto the magnetic field is proportional@opV - B [11].

A numerical algorithm that generates even srivalB will generate an unphysical force
parallel toB. Therefore, the size of such unphysical forces is a direct measure of the de
to which a numerical algorithm preserves the solenoidal character of the magnetic fiel

We simulated the evolution of a uniform plasma in a uniidr T axial magnetic field on
the same pair of Eulerian meshes used in the previous discussion—one composed o
rectangular cells and the other composed of nonrectangular cells.

For this equilibrium calculation, the initial plasma velocity is identically zero. The plasr
Bis 1.3 x 10-3. Boundary conditions on the three sides away from the symmetry axis all
the magnetic field in the interior to continue to the outside and set the velocity field to z
In Fig. 8 we show the velocity field of this perfectly conducting fluid after 10,000 tirn
steps (390 Alfen transit times across the entire mesh). As expected, the velocity ve
field is everywhere parallel to the magnetic field (and not, for example, to the grid li
of the nonorthogonal mesh). However, the ratio of the maximum fluid speed to thenAlf
speed is only~3 x 10-19 and the ratio of the final kinetic energy to the magnetic energy
~3 x 10-22, This is direct evidence that our magnetic flux conserving transport algoritl
does not generat€ - B beyond that generated by finite precision machine arithmetic.

Numerical algorithms for other physical processes not discussed in this paper (su
magnetic field diffusion) may not be as good at maintaining the solenoidal constraint or
magnetic field. Therefore, generally, it continues to be a good idea to use the nonconser
form of the momentum equation by subtracting from the left-hand side of Eq. (2) the te
BV - B/Mo.

D. Steady Flow Parallel to a Uniform Magnetic Field

In contrast to the previous section in which the magnetofluid was initially at rest w
respect to the computational mesh, we now consider the same uniform magnetofluid v
uniform 1 T axial magnetic field throughout the computational domain to be given an ini
uniform velocity in the axial direction. All other componentsB&ndu vanish identically
at cycle 0. Boundary conditions are applied to the three exterior edges (but not the axis
allow the magnetic field in the interior to continue to the outside by setting the ghost
values of the magnetic fieldtl T in theaxial direction. The velocity field on these three
edges is set to the same value as the interib=a0.

We have performed numerical simulations on computational grids composed of |
rectangular and nonrectangular cells, and with both sub- and supexridfiliid velocities.
In all cases, becauseis parallel toB, we expect the initial data to represent a stational
solution. In other words, the velocity and magnetic vector fields should be independe!
time and should not influence each other.

To illustrate the state of the simulation after 10,000 computational cycles, a plo
magnetic flux isocontours is superimposed on the nonorthogonal computational me
Fig. 9. For this particular problem, the initial flow speed was chosen to benl®which
is 0.256 x varven. At this speed and after 1@ycles, a fluid element will travel a distance
equal to 15 times the height of the problem domain. Figure 9 is indistinguishable fi
a plot of the corresponding data at cycle 0. The magnetic flux lines should be stre
lines oriented in the axial direction. The slight bending of the flux lines occurs ever
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FIG. 8. Spurious plasma velocity vector field superimposed on Eulerian rectangular (top) and nonorthog

(bottom) grid after 10,000 cycles of on computation from initially static data. The maximum plasma speed

achieved is only 3 1071° times the Alf\én speed.
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FIG.9. Magnetic flux lines superimposed on a nonorthogonal Eulerian grid in a cylindrical coordinate sys
after 10,000 computational cycles during which the fluid supporting the field is moving with a speed compal
to the Alfvén speed in the direction parallel to the magnetic field. The contours are equally spaced Feameen
J in increments of 0.026 Wb.

cycle Oandis caused by the interpolation between discrete data points onthe relatively c
nonorthogonal computational mesh. Even after 10,000 cycles, the velocity and mag
fields are qualitatively the same as the initial state. For example, the largest ratio of rz
to axial speed anywhere in the domaimni40~°. Similarly, the largest ratid®, /B, is also
~1076. We achieve similar results for other meshes and other flow speeds. For rectan
meshes, these ratios are consistently below 1 part’ih 10

E. Transverse Flow through Adjacent Regions with Antiparallel Magnetic Field Lines

Initially, a finite region of space is filled with magnetic field: the field in the left half is i
the +ydirection, and the field in the right halfis in they direction in Cartesian geometry as
illustrated in the top picture of Fig. 10. The total initial magnetic flux is identically zero. T|
fluid that supports the downward pointing field is given an initial velocity to the left. The rig
and left boundaries are perfect, immovable, flux-excluding walls. The magnetic field bot
ary conditions on the top and bottom boundaries allow the field lines to continue unimpe
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A pair of calculations was performed to compare the behavior of the new flux trans
algorithm to that of pure Lagrangian motion. The Lagrangian calculation has 16 cells in
direction of the flow. The Eulerian calculation has twice that number of cells, with unifo
width, so that the cell size is approximately equal to the size of the Lagrangian cells a
time of peak compression. The simulation time step is held constant and is selected s
peak compression occurs after 200 computational cycles. At that time, the magnetic v
field is illustrated in the bottom two frames of Fig. 10. The total flux in both the Eulerian a
Lagrangian problems remains zero to machine accuracy. The ratio of the maximum \
of the field to the initial magnitude after 200 cycles is 1.655 for the Lagrangian calculat
and 1.74 for the Eulerian calculation. The transition from positive to negative field occ
across a single cell in the Lagrangian, but it is distributed over approximately three cel
the Eulerian calculation. Nevertheless, the Eulerian calculation compares favorably t
Lagrangian simulation for the center of the transition region is essentially the same for
cases. The two calculations have three cells in the vertical direction to illustrate that t
is no unphysical variation of the magnetofluid in the direction transverse to the flow.

F. Formation of a Diamagnetic Cavity

The magnetic field lines of an infinitely long current-carrying wire form concentric ¢
cles around the wire, and the magnitude of the field falls inversely with the radial dista
from the wire. If the wire is a perfect conductor and excludes magnetic field, the cur
will flow only on the surface of the conductor. If it explodes from, for example, Ohm
heating and remains a perfect conductor that continues to exclude magnetic flux, a c
drical diamagnetic cavity will be formed as the explosion propagates outward in the ra
direction.

A numerical model of this process is a good demonstration of a code’s flux convec
technique. As the wire expands, we expect the magnetic field to be pushed outward so't
any moment, there is no magnetic flux in the volume presently occupied by wire mate
This is the case in the simulations where the inner boundary of the diamagnetic c:
corresponds to the interface between wire material and that material which is external t
wire. In Fig. 11, the magnetic state after 300 computational cycles for two different g
is illustrated by superimposing magnetic flux lines on the computational grid that supp
the physical state. The grid occupies a single quadrant, located above and toward the
edges of the page from the origin, and extends to 10 times the initial radius of the wir
symmetry boundary condition is applied to the magnetic field at the two boundaries
intersect at the origin. The calculation illustrated on the left on Fig. 11 is performed on w
is essentially a rectangular mesh for which the grid lines are not aligned with the flow line
the magnetofluid. The calculation on the right of this figure, however, is performedonan
suitable mesh for this radial expansion problem. It is satisfying that, as shown in Fig.11
magnetic field lines for both calculations are essentially the same after 300 cycles witt
differences in location of a particular isocontour never exceeding half of the width of a c

V. TIME-DEPENDENT SIMULATIONS OF COMPACT TOROID TRANSLATION

A simplified version of the compact toroid translation portion of Fig. 1 is formed by tl
volume between a pair of nested electrically-conducting cones that have a common ve
To demonstrate the utility of the techniques described in Section Il for substantial M
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FIG.11. Magnetic flux lines for a perfectly conducting plasma from an infinitely long exploding wire center
at the origin, 0, with current flowing out of the page after 300 computational cycles are superimposed on a
grid for two types of meshes in the Cartesiapplane. On the left, the mesh is essentially rectangular, and ¢
the right, the mesh is circular. The magnetic flux isocontours, illustrated via heavy solid curves, are unifol
distributed in increments of 0.03 Wb betwegn= 0.03 Wb andH = 0.24 Wb. The region between thecontour
and the origin is free of magnetic flux. The original location of the outer edge of the wire is illustrated with a he
dotted curve centered at 0.

problemsMACH2 was run in pure Eulerian mode to simulate the interesting and diffic
problem of compact toroid translation and compression. In this section, we perfori
numerical experiment by beginning a simulation with interesting initial conditions in
closed system that may be difficult to achieve in the laboratory. Simulations of a
physical system are discussed in Ref. [12]. The initial magnetic field distribution has
three components of the magnetic field arranged in a force-free configuration with non
magnetic helicity. Such a configuration is called a Woltjer-Taylor state [13, 14]. For ¢
purposes, it is sufficient to know that a compact toroid plasma in such a state is relati
stable and the force exerted by the plasma currents on the plasma vanishes Beisaus
everywhere parallel td@. The initial mass density and magnetic field distributions for
geometry in which the radius of the outer cone falls by a factor of nine over the lengtt
the cone is illustrated in Fig. 12.
The 1 mg,I" = 5/3 fully ionized hydrogen plasma is given an initial speed of afs

in the direction toward to the intersection of the two cones. The initial speed is somev
less that the initial average Ak speed of-2 x 10° m/s. The plasma mass is initially
distributed so the density isocontours are essentially aligned with the poloidal magr
flux lines, but this is not an important aspect of the problem. As the plasma is compre
between the converging electrodes, a force is generated by image currents in the elec
that acts in the direction to expel the plasma from the broad end of the inter-elect
region and tends to slow the plasma. In the process, kinetic energy is converted to mag
energy. Furthermore, the internal energy of the plasma increases with compression
initial magnetic energy is chosen to be 2 kJ so that, with the initial kinetic energy of 5
the plasma will reach at a later time a state of maximum compression in this partic
geometry with essentially zero kinetic energy; then it will reverse direction and accele
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FIG. 12. The initial MACH2 mass density and force-free magnetic field distributions for a compact torc
geometry in which the radius of the outer cone falls by a factor of nine over its length. Sample magnetic flux
wrap around an isosurface of plasma mass density. The computational mesh is also illustrated.

back to the broad end of the electrode gap where it originated. The 2D grid has 24 ce
the transverse direction, and 192 cells in the longitudinal direction.

The boundaries of the simulation domain are assumed to be rigid walls that exc
magnetic flux. Therefore, the magnetic flux through the boundary of the problem don
should be identically zero for all time. Figure 13 shows a sequence of snapshots of pols

FIG. 13. Poloidal magnetic flux lines for three different times aflacH2 calculation of the compression of
a CT given an initial speed parallel to the intersection of the two cones. From left to right: the initial $tat@at
the state of maximum compressiortat 10.5 S, the state dt= 20us.
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FIG. 14. The energy budget for the compact toroid compression simulationmgitii2 is shown vs time.
The different curves are: kinetic energy (plus signs), magnetic energy (diamonds), and internal energy (box

magnetic flux contours in thez plane of a cylindrical coordinate system at three differer
times from the simulation. Only that portion to the right of the axis of symmetry is shov
Isocontours of toroidal magnetic field look essentially like the poloidal flux lines, althou
the toroidal component of the magnetic field is strongest where the poloidal compone
weakest, and vice versa. The distribution of the plasma mass atiarsymilar to that of
the poloidal magnetic field at the same time.

The kinetic energy reaches its lowest value of 2.5% of its initial value at approximat
10.5 us at which time the magnetic energy has its greatest value of 5.8 kJ. The pla
internal energy never exceeds 400 J. Ideally, and neglecting nonadiabatic effects, we e
the initial and final states to be time symmetric. However, numerical diffusion causes
dynamics to be somewhat time asymmetric. The energy distribution as a function of 1
for this simulation is shown in Fig. 14. Quantitatively, the total energy falls monotonica
in time by approximately 14% over the 8400 cycles it takes the simulation to advance
dynamical equations by 2@s. More importantly, however, over the course of the 840
cycles the magnetic flux-conserving algorithm produces an error of 0.1% in the size o
total flux through the walls—which ideally should remain identically zero—relative to tl
maximum value of the flux function at the initial timee,

The energy loss occurs because there is no dynamical equation for the total energy, al
conservative upwind numerical convection scheme for momentum and magnetic flux:
conserves energy in the limit of infinitesimal cell size. We could impose energy conserva
by accumulating the local energy loss during each cycle of numerical convection and ad
this energy to the internal energy of the plasma, but this would not decrease the degr
time asymmetry for this simulation. Itis interesting to note that, because the initial rotatic
velocity is zero, it should remain so as long as the plasma is force Jrparéllel toB).
Hence, the degree to which the net rotational energy differs from zero is then a reflectic
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the accuracy of the numerical scheme for convecting the magnetic field. For this simula
the ratio of the rotational energy to the total energy never exceeds 1%.

VI. CONCLUSIONS

We have developed a new technique for the numerical convection of the magnetic ve
field in an arbitrary coordinate ALE code and implemented the technique in the t
dimensional MHD codeyacH?2, and the three-dimensional MHD cod&cH3. The power
of this technique was illustrated by performing six relatively simple test problems an
single complex problem of compact toroid compression and translation between a pe
conical electrodes.

The technique is perfectly flux conserving and has general applicability to codes in wi
all components of the magnetic field are co-located.
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