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We illustrate a new technique for computing the time-evolution of magnetic flux
on a generally nonorthogonal computational grid of a time-dependent, arbitrary
Lagrangian–Eulerian magnetohydrodynamics (MHD) simulation code and apply
this technique to some classical MHD test problems. For a nontrivial application, we
demonstrate the power of this technique for the interesting problem of compact toroid
translation between a pair of converging conical electrodes.c© 1998 Academic Press

I. INTRODUCTION

The ability to perform accurate simulation of the time evolution of a conducting mag-
netofluid is of great utility in a wide variety of space and laboratory situations. Of particular
interest to the authors are collisional plasmas that are generated in the laboratory in finite
regions defined by solid walls that may be either conductors or insulators. Often, the vol-
ume enclosed by the solid walls has a complex shape. A particular example of a laboratory
geometry of interest to us, illustrated in Fig. 1, occurs in the Phillips LaboratoryMARAUDER

(magnetically accelerated ring to achieve ultra-high directed energy and radiation) compact
toroid program. Its purpose is to study the formation, compression, and acceleration of
magnetized plasma rings. An overview of theMARAUDER experiment is given by Degnan
et al.[1]. The compact toroids are produced in a magnetized coaxial gun and are compressed
between a pair of converging conical electrodes.

Simulation of plasma dynamics is often performed on a discrete three-dimensional mesh
that is built from primitive polyhedra. A particularly simple polyhedron that is used by many
code developers is the cube, but it is not possible to stack cubes to conform to the geometry
of Fig. 1 without overlap. To simulate plasma dynamics within volumes of complex shape,
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FIG. 1. MARAUDER high energy compact toroid accelerator design concept. A compact toroid is produced in the
plasma gun and expansion volume that form the lower half of the apparatus. The toroid is then compressed between
a pair of converging electrodes and accelerated in the converging coaxial gap downstream of the compression
cones.

we have developed theMACH (multiblock arbitrary coordinate hydromagnetics) codes for
simulating unsteady, collisional, plasma behavior. The two-dimensional version,MACH2,
is discussed in [2], and the three-dimensional version,MACH3, is discussed in [3]. The
two-dimensional code is obtained from the three-dimensional version by demanding that
all derivatives in one of the coordinate directions vanish. The geometry in the codes is
described in either a cylindrical, or a Cartesian orthonormal frame.

TheMACH codes are of the Arbitrary Lagrangian/Eulerian (ALE) variety which allows
for flexibility in the physics options at the expense of some numerical complexity. In an ALE
code, Faraday’s law is advanced in two steps: a Lagrangian advance followed by a remap of
the magnetic field from the Lagrangian grid to the computational grid. The computational
grid can be at rest in a laboratory frame (Eulerian), at rest in the fluid frame (Lagrangian),
or in some other arbitrary state.

The Lagrangian advance of Faraday’s law is discussed in Brackbill and Pracht [4] and is
not reitereated here. The purpose of this paper is to describe a new magnetic flux-conserving
algorithm for the remap portion of the numerical solution to Faraday’s equation governing
the dynamics of the magnetic field on an arbitrary coordinate mesh. The layout of this
paper is as follows. The relevant equations solved byMACH and transport of conserved
quantities through the mesh are described in Section II. The magnetic flux transport algo-
rithm for an ALE code is described in Section III. Test problems that illustrate and validate
the implementation of the magnetic flux transport algorithm are presented in Section IV.
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Time-dependent simulations of compact toroid compression and translation are described
in Section V. Our conclusions are given in Section VI.

II. THE MACH CODES

The MACH codes have been used to solve the time-dependent, single fluid, multitem-
perature, nonideal radiation magnetohydrodynamics (MHD) equations for real materials
to guide and interpret a variety of collisional plasma experiments, as well as to perform
numerical experiments on novel plasma physics ideas. In this paper we focus on the details
of our new algorithm for the numerical convection of magnetic flux through an arbitrary
mesh.

The dynamical equations are solved on a mesh that is composed of primitive cells. The
cells are arranged in a patchwork of logically rectangular collections, called blocks, aligned
corner to corner. TheMACH grid lies in a family of planes equally spaced in the transverse
coordinate—eitherθ or z. Furthermore, the subgrids within those planes are identical to
each other. Thus, the three-dimensional grid is generated from a two-dimensional one
by replication at fixed intervals in the transverse direction. This multiple block structure
is suitable for performing numerical simulations of complex experimental configurations
such asMARAUDER for which a block structured 2D grid is shown in Fig. 2.

The primitive cell inMACH is a hexahedron. In Cartesian coordinates (x, y, z), it is formed
by translating an arbitrarily shapedxy-plane quadrilateral in thez-coordinate direction. In
cylindrical coordinates (r, φ, z), the primitive cell is constructed by translating anrz-plane
quadrilateral in theφ-coordinate direction. Henceforth, we refer to thez orφ coordinate as
the “orthogonal” direction, and thexy or rz coordinates as “in-plane.” These terms refer to
the computational geometry of the two-dimensional code. For the geometry of a compact
toroid, the “orthogonal” direction is usually called “toroidal” and the “in-plane” directions
are referred to as “poloidal.” A sampleMACH hexahedral primitive cell is illustrated in
Fig. 3. Each primitive cell has six faces, and each face is a quadrilateral. In the 3D code,
each face is shared by two cells. In the 2D code, the four faces with in-plane normals are
shared by two cells, and the two faces with orthogonal normals are not shared. To eliminate
ambiguity, we assign only the left (L), bottom (B), and front (F) face to a particular cell.

A. The Ideal MHD Equations ofMACH

For a charge-neutral magnetofluid of mass density,ρ, moving with velocity,u, in the
presence of a magnetic field,B, the code solves the mass continuity equation,

∂ρ

∂t
= −∇ · (ρu); (1)

the fluid momentum equation,

ρ
∂u
∂t
= −ρu · ∇u+∇ · (−γ (Pe+ Pi + Q)+M); (2)

the ion and neutral particle energy equation,

ρ
∂εi

∂t
= −ρu · ∇εi − Pi∇ · u+8ei; (3)
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FIG. 2. Collections of hexahedral cells form a block. Blocks are patched together to form a computational
domain. The computational region above is for theMARAUDER concept and is made from 14 blocks.

FIG. 3. Hexahedral cell for forming finite volumes inMACH. Each primitive cell has six faces, and each face
is shared by two cells. To eliminate ambiguity, we assign only the left (L), bottom (B), and front (F) face to a
particular cell.



             

152 PETERKIN, FRESE, AND SOVINEC

the electron energy equation,

ρ
∂εe

∂t
= −ρu · ∇εe− Pe∇ · u+ J · E−8ei; (4)

and Faraday’s law,

∂B
∂t
= −∇ × E. (5)

In Eq. (2),γ is the spatial metric tensor with contravariant components,γ αβ , andM is
the contravariant Maxwell stress tensor, which in MKS units is

Mαβ = 1

µ0

(
BαBβ − 1

2
B2γ αβ

)
, (6)

where Greek indices run from 1 to 3 and represent the three orthogonal spatial dimensions.
In this paper, we assume the summation convention over repeated indices. In theMACH

codes, the equations are generally solved in an orthonormal frame in which case the spatial
metric tensor is equivalent to the unit dyad. However, some of the analysis in the following
sections will be done in a coordinate basis in which the spatial metric can differ from the unit
dyad.8ei is an electron–ion coupling term [5].Q is an artificial numerical compressional
viscosity pressure.

The electric field,E, is obtained from a simple Ohm’s law,

E = −u× B. (7)

The displacement current is assumed to be relatively small so the current density is simply

J = ∇ × B
µ0

. (8)

The numerical approximation to the dynamical equations should preserve the constraint on
the magnetic field,

∇ · B = 0. (9)

This set of equations is closed by equations of state for the electron and ion plus neutral
pressures:Pe(i )= P(ρ, εe(i )). In this paper, we use an ideal gas equation of state with
constant ratio of specific heats0,

Pe(i ) = (0 − 1)ρεe(i ). (10)

B. Spatial Centering of Variables inMACH

As is common in ALE codes, the velocity vector field resides at the corners of the primitive
cell. These corners are usually called the nodes of the mesh. The eight cell centers,C, of
eight adjacent primitive cells that are placed in a 2× 2× 2 array form a dual primitive cell.
The nodes of the primitive cell move with fluid velocity during the Lagrangian advance
of the dynamical equations (1)–(5). Because the primitive cells are in general not cubic,
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finite volume differencing is used in theMACH codes. A finite volume approximation to the
divergence of a vector field,A, is then

∇ · A ' 1

V

∫
∇ · A dV = 1

V

∮
A · dS, (11)

where we have applied Stokes’ theorem for a control volume,V , that is bounded by a
surface,S, with outward pointing normal,̂n, so the components ofdSaredSα = nαdS. On
a discrete mesh, the control volume is that of the primitive cell or its dual, and the surface
integral in Eq. (11) is approximated by a sum over the faces of the cell. Hence,

∇ · A ' 1

V

mfaces∑
m=1

A · n̂m1Sm, (12)

wheren̂m is the unit normal to themth two-surface of area,1Sm. The number of faces,
mfaces, depends on how exactly the control volume,V , is constructed. Specifically,mfaces

need not be six.
If A resides at cell centers, then∇ · A resides at cell nodes, and vice versa. This is a

general property; each derivative moves the attention between cell center and cell node.
Thus, since forces are applied to the nodes in the Lagrangian step and are computed by
taking the divergence of a stress tensor as in Eq. (2), the stresses should be located at cell
centers. Hence,Pe, Pi , B, andσ reside fundamentally at cell centers inMACH.

C. Faraday’s Law for Ideal MHD

In ideal MHD, the electric field is simply−u×B, so Eq. (5) can be written in component
form as

∂Bα

∂t
= εαβγ∇β(εγ κλuκBλ), (13)

whereεαβγ is the Levi–Civita tensor density

εαβγ = γ−1/2[αβγ ], (14)

whereγ is the determinant of the spatial metric tensor in the particular coordinate system,
and [αβγ ] is the well-known totally antisymmetric symbol. If, as suggested in Ref. [6], we
define the contravariant magnetic vector density of weight 1 constructed from the magnetic
field and the 3-space metric as

βα ≡ √γ Bα, (15)

then Faraday’s law for ideal MHD takes on the particularly simple form in a coordinate
basis (as contrasted to an orthonormal frame)

∂βα

∂t
= ∂

∂xγ
(uαβγ − uγ βα). (16)

It is worth noting that the spatial metric in a cylindrical coordinate system (r, φ, z) is diagonal
with componentsγrr = 1, γφφ = r 2, γzz= 1, so

√
γ = r . Therefore, the physical poloidal
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components of the magnetic field in a cylindrical orthonormal frame are identical to the
poloidal components in a cylindrical coordinate basis, and the physical toroidal component
in an orthonormal frame is equal torBφ in a cylindrical coordinate basis. Hence, the poloidal
components ofβ in a coordinate basis are equal to the poloidal components ofr B in an
orthonormal frame, and the toroidal component ofβ is equal to the physicalBφ in an
orthonormal frame.

D. Conserved Quantities and Transport through the Mesh

The differential equations (1)–(5) are consistent with the integral conservation laws of
mass, momentum, internal energy, and magnetic flux. These quantities are conserved glob-
ally, but not, generally, within each primitive cell where mass, momentum, energy, and
magnetic flux can be transported between adjacent cells.

As an illustration, let us consider the total time derivative of the mass,m, in the generally
time-dependent volume,V, of a primitive cell with bounding surface,S. Let the grid velocity,
ug, be the velocity at which the boundary of the primitive cell moves. In the case of pure
Lagrangian motion, the grid velocity is identically the fluid velocity,u, but generally, the
relative velocity, defined as

urel ≡ ug − u (17)

is nonzero. Then the total time derivative (or convective derivative) is given by

Dt = ∂

∂t
+ ug · ∇. (18)

Therefore, the total time derivative of the cell mass is

Dtm= Dt

∫
V(t)

ρ dV =
∫

V(t)
[(Dtρ) dV + ρ(Dt dV)], (19)

where Dtρ is obtained by combining Eq. (18) with Eq. (1), andDt dV is given by the
well-known Euler expansion formula [7]:

Dt dV = ∇ · ug dV. (20)

Hence, Eq. (19) becomes

Dtm=
∫
∇ · (ρurel) dV (21)

which can be written as a surface integral by applying Stokes’ theorem to obtain

Dtm=
∮
ρurel · dS. (22)

The meaning of this is clear: the mass in a cell changes by an amount equal to an appropriately
chosen mass density,ρ, times the volume flux out of a cell,urel · dS. For pure Lagrangian
motion in whichurel vanishes, the mass in a cell does not change.
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A similar analysis can be performed for the magnetic flux,8, through a surface,S,

8 =
∫

S(t)
BαdSα =

∫
S(t)
βαdSc

α, (23)

wheredSc
α is the coordinate area element which is related to the physical area element,dSα,

via

dSα ≡ √γdSc
α. (24)

The total time derivative of the magnetic flux is then

Dt8 = Dt

∫
βαdSc

α =
∫ [
(Dtβ

α) dSc
α + βα

(
DtdSc

α

)]
, (25)

whereDtβ
α is obtained by combining Eq. (18) with Eq. (16) and Eq. (9), andDtdSc

α is
(see, for example, Ref. [6])

DtdSα =
(∇βuβg

)
dSc

α −
(∇αuβg

)
dSc

β. (26)

Hence, Eq. (25) becomes

Dt8 = −
∫
∇ × (urel× β) · dSc (27)

which can be written as a line integral by applying Stokes’ theorem to obtain

Dt8 = −
∮
(urel× β) · dxc, (28)

where the line integral is over the one-dimensional closed coordinate path that encloses the
surface,Sc. The meaning of this is clear: the flux through a surface changes by an amount
equal in magnitude, and opposite in sign, to the integral of the electric field around a closed
loop that bounds the surface. An alternate interpretation, similar to that for the change in
cell mass, can be seen by rewriting Eq. (28) as

Dt8 = −
∮
β · (urel× dxc) (29)

which means that the flux change is equal to an appropriately chosen magnetic vector
density,β, times the area flux out of a cell(urel× dxc). If the relative velocity vanishes, as
it does for pure Lagrangian motion, the magnetic flux does not change.

III. ALGORITHM FOR TRANSPORTING MAGNETIC FLUX

In 1988, Evans and Hawley published an “optimal strategy” for numerically evolving the
magnetic field equation of MHD in a manner that maintains the divergencelessness of the
magnetic field to within machine round-off error [6]. A key element of their approach is
the choice of spatial location of the three components of the magnetic field,B. They relied
on a staggered mesh on which each component onB is placed on one of the three unique
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generating orthogonal faces of each primitive cell. Their algorithm is thus unsuitable for
the MACH codes in which all three components ofB are co-located at the center of each
primitive cell. We describe here a similar, but new, algorithm that accounts for the magnetic
fluxes differently than is done in Ref. [6].

The strategy of Evans and Hawley is to compute a magnetic flux for each component
of B through the two-surface on which each component ofB resides. The time-derivative
of each flux is evaluated by taking a line-integral of−urel × β along the one-dimensional
closed coordinate boundary of each two-surface (see Eq. (28)). In our new algorithm for
MACH, we use a similar strategy, but the flux surfaces for the in-plane components of the
magnetic field are not the faces of the primitive cell.

In an ALE code, the grid and the fields supported by it are advanced during each compu-
tational cycle of incremental time,1t , in two steps. First, the grid and its fields are moved
in a Lagrangian fashion; that is, each node of the grid is moved with the local magnetofluid
velocity,u, by a displacement,1xL = u1t . We label the fields of the state of the system
with a subscriptL to indicate the state after the Lagrangian step, but before the transport
step. Second, the grid and its fields generally undergo a pull-back (or remap) to a final state,
F . During the pull-back, the displacement of each node of the grid is1xpull-back= urel1t .
The extreme in which there is no pull-back is the limit of fully Lagrangian motion. The
other extreme in which the pull-back brings the grid completely back to the original state
is the pure Eulerian case.

The Lagrangian advance of the physical components ofB is described by Brackbill and
Pracht [4]. The pull-back that conserves magnetic flux is done separately for each of the
three orthogonal components ofβ. In our treatment, all three components ofβ are co-
located at each cell center,C. We construct three flux surfaces—one for each component
of β—each of which contains the point,C. The construction is illustrated in Fig. 4.

A. Finite-Volume Magnetic Flux Advance

The prescription has three steps: (1) compute three fluxes through three Lagrangian
surfaces from three Lagrangian field components for each cell; (2) redistribute the three
magnetic fluxes in response to the relative velocity of the grid and fluid; and (3) com-
pute three new magnetic field components in each pulled-back cell from the three new
fluxes.

FIG. 4. Three magnetic flux surfaces for computing three different fluxes,8, in a cell centered at point,C.
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Let the three flux surfaces be labeled with the indexn that runs from 1 to 3. The normals
to then = 1 andn = 2 flux surfaces lie in the grid plane. Because the normal to the front
face of each primitive cell is in the orthogonal direction, so too is the normal to then = 3
flux surface.

The flux through thenth surface is surface is then

8n = Ac
nαβ

α, (30)

whereAc
nα is a 3× 3 matrix for the coordinate areas of then flux surfaces. Explicitly,81

82

83

 =
 Ac

1x Ac
1y 0

Ac
2x Ac

1y 0
0 0 Ac

3z

 ·
βx

β y

βz

 , (31)

where we usex, y, z to denote the three coordinate directions—withx, y the in-plane andz
the orthogonal coordinates—that are not necessarily Cartesian. In cylindrical coordinates,
x, y, z represent respectivelyr, z, φ. The decoupling of the orthogonal component ofβ

from the in-plane components is a consequence of the orientation of the primitive cell in
theMACH codes where, by definition, two of the cell faces are aligned with the orthogonal
coordinate direction. In the more general case, none of the elements of Eq. (31) will vanish.

Step one in our three-step process entails computing the three fluxes with data from just
after the Lagrangian step via Eq. (31).

The second step is to update the fluxes with the relative velocity of the grid via Eq. (28).
The integral over the path enclosing the flux surface must be replaced by a sum over the
edges that form the boundary of the flux surface. In theMACH codes, Eq. (28) becomes
a sum over four edges. The change in the magnetic flux through flux surfacen during an
increment of time,1t , is

18n = −1t
4∑

l=1

(
uel

rel× βel
up

) ·1xcel , (32)

whereuel
rel is the relative velocity of edgel , βel

up is an appropriately chosen, essentially
upwind, magnetic vector density at this edge, and1xcel is the coordinate length of the edge
of flux surfacen. The relative velocity in an ALE code is defined at the primitive cell nodes
which are the endpoints of an edge. The edge-value of the relative velocity is simply the
arithmetic mean of the two edge-point values.

The magnetic flux through the pulled-back flux surfacen is

8′n = 8n +18n. (33)

A pair of adjacent generic flux surfaces ofβ, each with outward-pointing normal, is illus-
trated in Fig. 5. The right-handed direction of integration for the boundary of each surface is
illustrated in the figure. Because of the direction of integration, the contribution to the flux
change for the two adjacent flux surfaces on each side of an edge are equal in magnitude,
but opposite in sign. Consequently, we compute the contribution to the flux change from
the motion of a particular edge only once and add it to the flux through surfacen on both
sides of the edge, but with opposite signs so that the total flux change from a single edge
contribution is identically zero.
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FIG. 5. A pair of adjacent magnetic flux surfaces for magnetic vector density with the direction of path
integration shown for both surfaces.

Finally, the new magnetic field densities are computed from the pulled-back fluxes and
cell areas by inverting Eq. (30).

β ′α = (A′c αn)−18′n, (34)

where prime denotes pulled-back data. Explicitly,β ′xβ ′y
β ′z

 =
 A′c2y/℘ −A′c2x/℘ 0
−A′c1y/℘ A′c1x/℘ 0

0 0 1/A′c3z

 ·
8′18′2
8′3

 , (35)

where℘ is the minor determinant ofA′c, and is explicitlyA′c1x A′c2y − A′c1y A′c2x.

B. Divergence Constraint on the Magnetic Field

The finite volume approximation to the constraint on the magnetic field, Eq. (9), is
obtained by replacing the generic vector field,A with B in Eqs. (11) and (12). Because
the components ofB reside at cell centers, the divergence ofB resides at grid vertices. A
finite volume approximation to the divergence ofB is obtained by selecting an appropriate
control volume,V that surrounds a given vertex. Hence,

∇ · B ' 1

V

mfaces∑
m=1

B · n̂m1Sm = 1

V

mfaces∑
m=1

β · n̂m1Sc
m, (36)

where the sum is over the number of faces that define the control volume containing
the vertex at which∇ ·B is centered, and1Sc

m is the mth coordinate two-surface area.
β · n̂m1Sc

m is the magnetic flux through themth flux surface.
If the coordinate two-surface areas,n̂m1Sc

m are chosen to be constructed from theAc
nα

used in the computation of the three magnetic fluxes via Eq. (31), then it is straightforward
to show that the magnetic flux transport algorithm does not introduce spurious divergenceB.

Let us assume that the initial value problem has been correctly specified to be divergence
free. Then we must show that the new magnetic field density is divergence free after it has
been time advanced via the new flux transport algorithm.

Each grid vertex is surrounded by a total of eight primitive cells. A closed surface that
encloses the control volume of a particular vertex can be constructed from the three flux
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surfaces from each of the eight cells that surround the vertex. The three flux surfaces that
are associated with each primitive cell do not share any edges, and in fact share only a single
point, the cell center,C. However, a surface that encloses the vertex-centered control volume
can be made from all three of the flux surfaces in all of the eight surrounding primitive cells
if only that quarter of each flux surface that is closest to the vertex is used. Then there
are a total ofmfaces= 24 flux surface elements required to evaluate the divergence ofB.
Therefore, we can write Eq. (36) as

∇ · B ' 1

V

3∑
n=1

8∑
l=1

8n,l/4, (37)

where8n,l is the magnetic flux through thenth flux surface of thel th cell that surrounds a
vertex.

Let the spatial indicesi, j , andk label cell centers, withi and j spanning the in-plane
directions, withi increasing from left to right andj increasing from bottom to top, andk
increasing in the orthogonal direction. Then a vertex, located at(i +1/2, j +1/2, k+1/2)
is surrounded by four cells in thek-plane, starting from the bottom left and continuing in
a clockwise manner, at(i, j, k), (i, j + 1, k), (i + 1, j + 1, k), and(i + 1, j, k), with an
additional four cells in thek+ 1 plane.

With this labeling convention, Eq. (37) for the divergence of the time-advanced field,B′

can be written as

∇ · B′ ' 1

4V



−8′1,i, j,k +8′2,i, j,k +8′3,i, j,k
−8′1,i, j+1,k −8′2,i, j+1,k +8′3,i, j+1,k

+8′1,i+1, j+1,k −8′2,i+1, j+1,k +8′3,i+1, j+1,k

+8′1,i+1, j,k +8′2,i+1, j,k +8′3,i+1, j,k

−8′1,i, j,k+1 +8′2,i, j,k+1 −8′3,i, j,k+1

−8′1,i, j+1,k+1 −8′2,i, j+1,k+1 −8′3,i, j+1,k+1

+8′1,i+1, j+1,k+1 −8′2,i+1, j+1,k+1 −8′3,i+1, j+1,k+1

+8′1,i+1, j,k+1 +8′2,i+1, j,k+1 −8′3,i+1, j,k+1


, (38)

where8′n,l is the time-advanced magnetic flux through thenth flux surface of thel th cell,
and where the correct sign has been inserted in front of each8′n,l to account for the relative
orientation of the flux surface and the surface that surrounds the vertex(i + 1/2, j + 1/2, k+
1/2). Equation (38) is a correct finite volume version of the divergenceB operator applied
to B′.

Each8′n,l in Eq. (38) is related to8n,l by8′n,l = 8n,l +18n,l as in Eq. (33). The change
in the divergence ofB,1(∇ · B), can be replaced by the sum of the 2418n,l with signs
as in Eq. (38). Here each18n,l is simply the magnetic flux change that is a consequence
of the relative motion between the magnetofluid and the grid given in Eq. (32). The sum
is zero since the 24 flux changes can be grouped into 12 pairs so that each pair vanishes
identically. For example,181,i, j,k = −181,i+1, j,k because these flux surfaces share an
edge and the flux change at this edge is computed just once, but applied twice with opposite
signs to the adjacent surfaces. Therefore, the magnetic flux transport algorithm preserves
the divergence of the magnetic field to machine precision.
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IV. VALIDATION TEST PROBLEMS WITH MACH 2

In what follows, the technique described in the previous section is applied to six simple
numerical magnetic convection problems with theMACH2 code. This test suite is compli-
mentary to that proposed by Stone, Evans, Hawley, and Norman [8].

A. Cartesian Numerical Convection

A standard test problem is the numerical convection of an initially rectangular pulse
through a fixed grid. A good numerical scheme will do this with a tolerable degree of nu-
merical diffusion and dispersion. We performed two calculations with different prescriptions
for choosing the upwind value of the magnetic vector density in Eq. (28).

Initially, a test field in they direction with magnitude 10−5 T is placed in the 16 left-most
cells of a problem domain with fixed mesh that is 80 cells wide. In this case, the plasma
β (ratio of the fluid pressure to the magnetic pressure) is 107. The fluid that supports the
pulse of magnetic field is given an initial speed on 104 m/s (8×105 times the Alfvén speed)
to the right. The small magnitude of the magnetic field is chosen so as not to produce an
appreciable magnetic pressure that would otherwise influence the dynamics. A plot of the
magnetic field distribution vs cell number at cycle 0 as well as after 500 computational
cycles, by which time the pulse has traveled through approximately 40 cells, is shown in
Fig. 6 for two different choices for the upwind value ofB. The computation that produced the
graph on the top of the figure used a first-order donor cell scheme, whereas the computation
that produced the bottom graph used a second-order van Leer scheme [9].

While neither scheme generates substantial dispersion, not surprisingly the van Leer
scheme is superior for reducing numerical diffusion. In both cases, however, the imple-
mentation of Eq. (32) conserves magnetic flux to machine accuracy. Because the van Leer
prescription is obviously superior to donor cell, the second-order scheme is used in all
subsequent simulations.

B. Radial Numerical Convection through a Nonorthogonal Grid

A more challenging test problem is the numerical convection of an initially rectangular
pulse of magnetic field through a fixed, but nonorthogonal, grid. In this case, the mag-
netic vector field is not aligned with the normals to the magnetic flux surfaces. Again, we
performed two calculations with identical initial data and numerical algorithm, but with
two different computational grids: one composed of only rectangular cells, and the other
composed of nonrectangular cells. Both problems were performed in cylindrical rather than
Cartesian coordinates.

A test field is applied in thez cylindrical direction but with magnitude 0.6366 T which
yields a total magnetic flux of 1 mWb. This pulse is placed in the eight right-most cells of a
problem domain that is 24 cells wide and eight cells high. The fluid moves with a speed on
104 m/s to the left (in the−r direction). The ratio of the initial kinetic energy to the magnetic
energy is 2/3. Isocontours of magnetic flux that are superimposed on the computational
mesh after 200 computational cycles, by which time the inner edge of the pulse has traveled
approximately 1.5 times its initial thickness, are illustrated in Fig. 7. The ratio of the total
flux after 200 cycles to the total initial flux is 1.003 on the rectangular grid and is 1.021
on the nonorthogonal grid. The figure shows the flux lines to be perfectly straight on the
rectangular grid and to bend slightly inward at the top boundary of the nonorthogonal grid.
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FIG. 6. A first-order donor cell scheme (top) contrasted to a second-order van Leer scheme (bottom) for
numerical convection of a rectangular pulse through a fixed Cartesian grid. The original pulse and the pulse after
500 cycles are shown respectively on the left edge and centered at about cell 52.

Part of this bend is caused by the nature of the discrete data set since the magnetic flux
exists only at the nodes of the grid. The plotting package performs a bilinear interpolation
between nodes to approximate the placement of the contour lines between the nodes.

C. Equilibrium Calculation and Unphysical Forces Parallel to the Magnetic Field

A magnetofluid initially at rest with a uniform axial magnetic field develops spurious
forces parallel toB when the conservative form of the momentum equation is solved numer-
ically. As explained by Brackbill and Barnes [10], these spurious forces are a consequence
of nonzero∇ · B. Motivated by the numerical test discussed in their paper, we monitor the
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FIG. 7. Magnetic flux of an initially pure axial magnetic field on a fixed rectangular (top) and non-orthogonal
(bottom) grid after 200 cycles of inward radial motion. The contours begin withA at 10−4 Wb are separated by
10−4 Wb. Initially, all of the flux was placed in the right 1/3 of the simulated area.
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possible development of an unphysical acceleration parallel to a magnetic field when we use
the conservative form of the momentum equation Eq. (2). The projection of the magnetic
force density onto the magnetic field is proportional to|B| ∇ · B [11].

A numerical algorithm that generates even small∇ ·B will generate an unphysical force
parallel toB. Therefore, the size of such unphysical forces is a direct measure of the degree
to which a numerical algorithm preserves the solenoidal character of the magnetic field.

We simulated the evolution of a uniform plasma in a uniform 1 T axial magnetic field on
the same pair of Eulerian meshes used in the previous discussion—one composed of only
rectangular cells and the other composed of nonrectangular cells.

For this equilibrium calculation, the initial plasma velocity is identically zero. The plasma
β is 1.3×10−3. Boundary conditions on the three sides away from the symmetry axis allow
the magnetic field in the interior to continue to the outside and set the velocity field to zero.
In Fig. 8 we show the velocity field of this perfectly conducting fluid after 10,000 time
steps (390 Alfvén transit times across the entire mesh). As expected, the velocity vector
field is everywhere parallel to the magnetic field (and not, for example, to the grid lines
of the nonorthogonal mesh). However, the ratio of the maximum fluid speed to the Alfv´en
speed is only∼3× 10−10 and the ratio of the final kinetic energy to the magnetic energy is
∼3× 10−22. This is direct evidence that our magnetic flux conserving transport algorithm
does not generate∇ · B beyond that generated by finite precision machine arithmetic.

Numerical algorithms for other physical processes not discussed in this paper (such as
magnetic field diffusion) may not be as good at maintaining the solenoidal constraint on the
magnetic field. Therefore, generally, it continues to be a good idea to use the nonconservative
form of the momentum equation by subtracting from the left-hand side of Eq. (2) the term
B∇ · B/µ0.

D. Steady Flow Parallel to a Uniform Magnetic Field

In contrast to the previous section in which the magnetofluid was initially at rest with
respect to the computational mesh, we now consider the same uniform magnetofluid with a
uniform 1 T axial magnetic field throughout the computational domain to be given an initial
uniform velocity in the axial direction. All other components ofB andu vanish identically
at cycle 0. Boundary conditions are applied to the three exterior edges (but not the axis) that
allow the magnetic field in the interior to continue to the outside by setting the ghost cell
values of the magnetic field to 1 T in theaxial direction. The velocity field on these three
edges is set to the same value as the interior att = 0.

We have performed numerical simulations on computational grids composed of both
rectangular and nonrectangular cells, and with both sub- and super-Alfv´enic fluid velocities.
In all cases, becauseu is parallel toB, we expect the initial data to represent a stationary
solution. In other words, the velocity and magnetic vector fields should be independent of
time and should not influence each other.

To illustrate the state of the simulation after 10,000 computational cycles, a plot of
magnetic flux isocontours is superimposed on the nonorthogonal computational mesh in
Fig. 9. For this particular problem, the initial flow speed was chosen to be 105 m/s which
is 0.256× vAlfv én. At this speed and after 104 cycles, a fluid element will travel a distance
equal to 15 times the height of the problem domain. Figure 9 is indistinguishable from
a plot of the corresponding data at cycle 0. The magnetic flux lines should be straight
lines oriented in the axial direction. The slight bending of the flux lines occurs even at
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FIG. 8. Spurious plasma velocity vector field superimposed on Eulerian rectangular (top) and nonorthogonal
(bottom) grid after 10,000 cycles of on computation from initially static data. The maximum plasma speed ever
achieved is only 3× 10−10 times the Alfvén speed.
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FIG. 9. Magnetic flux lines superimposed on a nonorthogonal Eulerian grid in a cylindrical coordinate system
after 10,000 computational cycles during which the fluid supporting the field is moving with a speed comparable
to the Alfvén speed in the direction parallel to the magnetic field. The contours are equally spaced betweenA and
J in increments of 0.026 Wb.

cycle 0 and is caused by the interpolation between discrete data points on the relatively coarse
nonorthogonal computational mesh. Even after 10,000 cycles, the velocity and magnetic
fields are qualitatively the same as the initial state. For example, the largest ratio of radial
to axial speed anywhere in the domain is∼10−6. Similarly, the largest ratioBr /Bz is also
∼10−6. We achieve similar results for other meshes and other flow speeds. For rectangular
meshes, these ratios are consistently below 1 part in 1015.

E. Transverse Flow through Adjacent Regions with Antiparallel Magnetic Field Lines

Initially, a finite region of space is filled with magnetic field: the field in the left half is in
the+ydirection, and the field in the right half is in the−ydirection in Cartesian geometry as
illustrated in the top picture of Fig. 10. The total initial magnetic flux is identically zero. The
fluid that supports the downward pointing field is given an initial velocity to the left. The right
and left boundaries are perfect, immovable, flux-excluding walls. The magnetic field bound-
ary conditions on the top and bottom boundaries allow the field lines to continue unimpeded.
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FIG. 10. Compressing antiparallel magnetic fields at cycle 0 (top), after 200 cycles in pure Lagrangian mode
(middle), and after 200 cycles in pure Eulerian mode (bottom). The relative size of each vector indicates relative
field strength.
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A pair of calculations was performed to compare the behavior of the new flux transport
algorithm to that of pure Lagrangian motion. The Lagrangian calculation has 16 cells in the
direction of the flow. The Eulerian calculation has twice that number of cells, with uniform
width, so that the cell size is approximately equal to the size of the Lagrangian cells at the
time of peak compression. The simulation time step is held constant and is selected so that
peak compression occurs after 200 computational cycles. At that time, the magnetic vector
field is illustrated in the bottom two frames of Fig. 10. The total flux in both the Eulerian and
Lagrangian problems remains zero to machine accuracy. The ratio of the maximum value
of the field to the initial magnitude after 200 cycles is 1.655 for the Lagrangian calculation
and 1.74 for the Eulerian calculation. The transition from positive to negative field occurs
across a single cell in the Lagrangian, but it is distributed over approximately three cells in
the Eulerian calculation. Nevertheless, the Eulerian calculation compares favorably to the
Lagrangian simulation for the center of the transition region is essentially the same for both
cases. The two calculations have three cells in the vertical direction to illustrate that there
is no unphysical variation of the magnetofluid in the direction transverse to the flow.

F. Formation of a Diamagnetic Cavity

The magnetic field lines of an infinitely long current-carrying wire form concentric cir-
cles around the wire, and the magnitude of the field falls inversely with the radial distance
from the wire. If the wire is a perfect conductor and excludes magnetic field, the current
will flow only on the surface of the conductor. If it explodes from, for example, Ohmic
heating and remains a perfect conductor that continues to exclude magnetic flux, a cylin-
drical diamagnetic cavity will be formed as the explosion propagates outward in the radial
direction.

A numerical model of this process is a good demonstration of a code’s flux convection
technique. As the wire expands, we expect the magnetic field to be pushed outward so that at
any moment, there is no magnetic flux in the volume presently occupied by wire material.
This is the case in the simulations where the inner boundary of the diamagnetic cavity
corresponds to the interface between wire material and that material which is external to the
wire. In Fig. 11, the magnetic state after 300 computational cycles for two different grids
is illustrated by superimposing magnetic flux lines on the computational grid that supports
the physical state. The grid occupies a single quadrant, located above and toward the side
edges of the page from the origin, and extends to 10 times the initial radius of the wire. A
symmetry boundary condition is applied to the magnetic field at the two boundaries that
intersect at the origin. The calculation illustrated on the left on Fig. 11 is performed on what
is essentially a rectangular mesh for which the grid lines are not aligned with the flow lines of
the magnetofluid. The calculation on the right of this figure, however, is performed on a more
suitable mesh for this radial expansion problem. It is satisfying that, as shown in Fig.11, the
magnetic field lines for both calculations are essentially the same after 300 cycles with the
differences in location of a particular isocontour never exceeding half of the width of a cell.

V. TIME-DEPENDENT SIMULATIONS OF COMPACT TOROID TRANSLATION

A simplified version of the compact toroid translation portion of Fig. 1 is formed by the
volume between a pair of nested electrically-conducting cones that have a common vertex.
To demonstrate the utility of the techniques described in Section III for substantial MHD
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FIG. 11. Magnetic flux lines for a perfectly conducting plasma from an infinitely long exploding wire centered
at the origin, 0, with current flowing out of the page after 300 computational cycles are superimposed on a fixed
grid for two types of meshes in the Cartesianxy plane. On the left, the mesh is essentially rectangular, and on
the right, the mesh is circular. The magnetic flux isocontours, illustrated via heavy solid curves, are uniformly
distributed in increments of 0.03 Wb betweenA= 0.03 Wb andH = 0.24 Wb. The region between theA contour
and the origin is free of magnetic flux. The original location of the outer edge of the wire is illustrated with a heavy
dotted curve centered at 0.

problems,MACH2 was run in pure Eulerian mode to simulate the interesting and difficult
problem of compact toroid translation and compression. In this section, we perform a
numerical experiment by beginning a simulation with interesting initial conditions in a
closed system that may be difficult to achieve in the laboratory. Simulations of a more
physical system are discussed in Ref. [12]. The initial magnetic field distribution has all
three components of the magnetic field arranged in a force-free configuration with nonzero
magnetic helicity. Such a configuration is called a Woltjer–Taylor state [13, 14]. For our
purposes, it is sufficient to know that a compact toroid plasma in such a state is relatively
stable and the force exerted by the plasma currents on the plasma vanishes becauseJ is
everywhere parallel toB. The initial mass density and magnetic field distributions for a
geometry in which the radius of the outer cone falls by a factor of nine over the length of
the cone is illustrated in Fig. 12.

The 1 mg,0 = 5/3 fully ionized hydrogen plasma is given an initial speed of 105 m/s
in the direction toward to the intersection of the two cones. The initial speed is somewhat
less that the initial average Alfv´en speed of∼2× 105 m/s. The plasma mass is initially
distributed so the density isocontours are essentially aligned with the poloidal magnetic
flux lines, but this is not an important aspect of the problem. As the plasma is compressed
between the converging electrodes, a force is generated by image currents in the electrodes
that acts in the direction to expel the plasma from the broad end of the inter-electrode
region and tends to slow the plasma. In the process, kinetic energy is converted to magnetic
energy. Furthermore, the internal energy of the plasma increases with compression. The
initial magnetic energy is chosen to be 2 kJ so that, with the initial kinetic energy of 5 kJ,
the plasma will reach at a later time a state of maximum compression in this particular
geometry with essentially zero kinetic energy; then it will reverse direction and accelerate
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FIG. 12. The initial MACH2 mass density and force-free magnetic field distributions for a compact toroid
geometry in which the radius of the outer cone falls by a factor of nine over its length. Sample magnetic flux lines
wrap around an isosurface of plasma mass density. The computational mesh is also illustrated.

back to the broad end of the electrode gap where it originated. The 2D grid has 24 cells in
the transverse direction, and 192 cells in the longitudinal direction.

The boundaries of the simulation domain are assumed to be rigid walls that exclude
magnetic flux. Therefore, the magnetic flux through the boundary of the problem domain
should be identically zero for all time. Figure 13 shows a sequence of snapshots of poloidal

FIG. 13. Poloidal magnetic flux lines for three different times of aMACH2 calculation of the compression of
a CT given an initial speed parallel to the intersection of the two cones. From left to right: the initial state att = 0,
the state of maximum compression att = 10.5µs, the state att = 20µs.
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FIG. 14. The energy budget for the compact toroid compression simulation withMACH2 is shown vs time.
The different curves are: kinetic energy (plus signs), magnetic energy (diamonds), and internal energy (boxes).

magnetic flux contours in therz plane of a cylindrical coordinate system at three different
times from the simulation. Only that portion to the right of the axis of symmetry is shown.
Isocontours of toroidal magnetic field look essentially like the poloidal flux lines, although
the toroidal component of the magnetic field is strongest where the poloidal component is
weakest, and vice versa. The distribution of the plasma mass at anyt is similar to that of
the poloidal magnetic field at the same time.

The kinetic energy reaches its lowest value of 2.5% of its initial value at approximately
10.5µs at which time the magnetic energy has its greatest value of 5.8 kJ. The plasma
internal energy never exceeds 400 J. Ideally, and neglecting nonadiabatic effects, we expect
the initial and final states to be time symmetric. However, numerical diffusion causes the
dynamics to be somewhat time asymmetric. The energy distribution as a function of time
for this simulation is shown in Fig. 14. Quantitatively, the total energy falls monotonically
in time by approximately 14% over the 8400 cycles it takes the simulation to advance the
dynamical equations by 20µs. More importantly, however, over the course of the 8400
cycles the magnetic flux-conserving algorithm produces an error of 0.1% in the size of the
total flux through the walls—which ideally should remain identically zero—relative to the
maximum value of the flux function at the initial time,t .

The energy loss occurs because there is no dynamical equation for the total energy, and the
conservative upwind numerical convection scheme for momentum and magnetic flux only
conserves energy in the limit of infinitesimal cell size. We could impose energy conservation
by accumulating the local energy loss during each cycle of numerical convection and adding
this energy to the internal energy of the plasma, but this would not decrease the degree of
time asymmetry for this simulation. It is interesting to note that, because the initial rotational
velocity is zero, it should remain so as long as the plasma is force free (J parallel toB).
Hence, the degree to which the net rotational energy differs from zero is then a reflection of
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the accuracy of the numerical scheme for convecting the magnetic field. For this simulation,
the ratio of the rotational energy to the total energy never exceeds 1%.

VI. CONCLUSIONS

We have developed a new technique for the numerical convection of the magnetic vector
field in an arbitrary coordinate ALE code and implemented the technique in the two-
dimensional MHD code,MACH2, and the three-dimensional MHD code,MACH3. The power
of this technique was illustrated by performing six relatively simple test problems and a
single complex problem of compact toroid compression and translation between a pair of
conical electrodes.

The technique is perfectly flux conserving and has general applicability to codes in which
all components of the magnetic field are co-located.
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